
hisock
Release 1.0

SSS-Says-Snek

Oct 13, 2021





CONTENTS:

1 Table of Contents 3
1.1 Quickstart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 More Tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 API Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Changelog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Index 23

i



ii



hisock, Release 1.0

hisock is a higher-level extension of the socket module, with simpler and more efficient usages. It completely removes
the hassle of headers, and utilizes decorators to maintain a good code structure.

Note: This project is still currently under development. This is also the first package of the developer, SSS_Says_Snek,
so if you find something that needs improvement, submit an issue on the GitHub Repository

CONTENTS: 1

https://github.com/SSS-Says-Snek/hisock/


hisock, Release 1.0

2 CONTENTS:



CHAPTER

ONE

TABLE OF CONTENTS

• genindex

• modindex

• search

1.1 Quickstart

These pages provide you with information to start your hisock journey!

Tutorials will be added eventually, but for now, there are only installation steps and some examples

1.1.1 Understanding hisock

First of all, what. . . IS hisock? Well, it’s a higher-level extension of the socketmodule, with simpler and more efficient
usages, sure, but for beginners, it may be a bit confusing.

What is the socket module?

I’ve mentioned a lot about a socket module in Python a lot, but some of y’all may not know what socket is. Basically,
it’s a pretty low-level networking interface that uses “sockets” to communicate between computers over a network. The
problem is, it’s a bit overwhelming when you start learning sockets.

So, I developed hisock, which basically simplifies socket down, and provides additional features.

What are the advantages of using hisock over socket?

That’s a good question. While hisock is still under development, it aims to simplify or eliminate some complex parts
of the standard socket. For example, hisock uses decorators to simplify code structure, and eliminates the hassle of
worrying about headers.

Note: Again, some of you may not know what a header is. When you send data, it is not interpreted as a “message”;
instead of messages, there is a “stream” of data, and the client/server decides how many bytes to read from the stream.
This creates a problem; how do we know how much of a message to read? This is where headers come in. They are
basically data the specifies the length of a “message”. In order for this to work, headers MUST be fixed-length, so it is
usually padded with spaces.

Let’s say that I decided that my header length would be 16 bytes long. When a client sends me some data, it will have
that header in front, then the actual content. I would first receive the first 16 bytes, and see that it is the number “12”,

3



hisock, Release 1.0

followed by 14 spaces. At this point, I know that the “message” is 12 bytes long. So, I receive another 12 bytes, to get
the message “Hello World!”

How do you send and received data with hisock?

Data sent with hisock usually has a command before the data (but before the header, of course). Once the command is
sent, it can be received using decorators hisock.server.on and hisock.client.on. An argument will be passed
in those decorators, and

1.1.2 Installation

There are two options when installing hisock:

1. You can download a zip of it on Github. It is located here. You can either clone it with the website or Github
Desktop, but you can also clone it with Git:

$ git clone https://github.com/SSS-Says-Snek/hisock.git (Git)
OR

$ gh repo clone SSS-Says-Snek/hisock (GitHub CLI)

Then, copy-paste the module into your code, and it should work!

Caution: This method of installing is heavily discouraged, unless you have modified hisock enough. However, if
you had lots of modified changes, you could open a pull request on Github, and wait for me to approve it

2. You can install it via pip (RECOMMENDED). You can use the following command in the terminal/command
prompt:

$ python -m pip install hisock (Windows)
OR

$ pip3 install hisock (Mac/Linux)

Then, you have hisock installed to your python version! An extremely big plus of this installation over the manual
installation is that you are able to use it anywhere on your computer, without cloning it into your directory.

Warning: hisock is the first project I ever published to PyPI, so there might be some quirks on PyPI here and there,
like the sudden burst of version post-releases. However, I will try to keep this at the bare minimum, and hopefully
figure out PyPI good enough

1.1.3 Tutorial

In this “tutorial”, I’m going to be explaining the basic parts of hisock, and how to use them to create working programs.

It is also highly encouraged that you read the Understanding Hisock before reading the tutorial.

Error: The tutorial is still in progress, so if you have an issue right now, it might be fixed after the tutorial is
complete!

4 Chapter 1. Table of Contents

https://github.com/SSS-Says-Snek/hisock/


hisock, Release 1.0

Caution: I might explain some things wrong, so if you see something wrong with my explanation, I encourage
you to try to submit a pull request on Github to fix it!

Note: Due to certain reasons, for the client part, I will be referring the server’s IP as utils.get_local_ip(), the
same IP address as where the server is hosted at. Of course, in real applications, there will either be input for the server
IP, or a hardcoded server IP

First of all, we need to install hisock. Assuming you have pip, you can install hisock with either python -m pip
install hisock for Windows, or pip3 install hisock for Mac/Linux. Refer to the installation guide for more
details.

First of all, network structures are divided into servers and clients. Servers basically serve data, and can also be a mean
of communicating between clients. Clients are just the users that give and receive the server data.

Note: For example, if you are creating a multiplayer game, you can create a server that clients need to join; once they
do, client A can ask the server to share some info to client B, and so on and so forth.

Creating our first server

There is a function to create a server in hisock, it is hisock.start_server(). To host a server, we’d need a tuple
with two arguments; the first argument is the IP address of the server. Hisock provides a way to find your local IP
address, with hisock.utils.get_local_ip(). The second argument is the port of the server. I won’t go into ports,
but usually a number between 1024 and 65535 would suffice.

Hisock servers and clients have a run() and update() method respectively, in order to run correctly. However, you
need to run them in a while loop, as to minimize lag time. So, our final server script looks like:

from hisock import start_server, utils

server = start_server((utils.get_local_ip(), 36969)) # Haha funny

while True:
server.run()

That’s basically it! Of course, this server is useless, but hey, it’s a step in the right direction! We’ll add on to this later
on.

Creating our first client

Obviously, without a client, a server’s kind of pointless. So, let’s spice things up, with some boilerplate client code!

Now, the first thing we need to do, is to connect to the server. We can do that with hisock’s connect() function. Like
start_server(), it takes one tuple as an argument, with two elements; The first one is the IP of the server, and the
second one is the port of the server.

Also like HiSockServer, HiSockClient needs to be ran in a while loop. However, in HiSockClient, instead of the
run() method, it is called update(). So, our final boilerplate client code is:

1.1. Quickstart 5



hisock, Release 1.0

from hisock import connect, utils

# This is a bit tricky - This will only work on the same computer
# running the server, as it gets the same IP (unless you port forward)
client = connect((utils.get_local_ip()), 36969)

while True:
client.update()

Like the server, this doesn’t do anything at all yet, but soon, we’ll finally add some functionality to the server and client!

Clearing some things up

Let me clear some stuff up first; data sent with hisock usually has a command before the data. Once the command is
sent, it can be received using decorators hisock.server.on and hisock.client.on. An argument will be passed in
those decorators that specifies the command to listen data with those commands. When data with the command attached
is found, hisock will call that function, and pass in a few arguments regarding message content (hisock.server will
also have an argument about the client data).

Let’s start with a decorator example for the server

# Server
server = ...

@server.on("random_command")
def random_cmd_handler(clt_data, message):

# clt_data is a dict of client information
# message is the data content, in bytes

print(message)

If any data is found with the command “random_command” attached before it, then it will call
random_cmd_handler(), filling in the parameters with the appropriate values.

Finally, we have an example of the client

client = ...

@client.on("another_random_command")
def handler_thing(message):

# No clt_data, as server always sends message
print(message)

This isn’t much different to the server; any data that has the command “another_random_command” attached to it, will
automatically call handler_thing(), albeit with less parameters

Now that we’ve done that, let’s add functionality to our bland server and client!

6 Chapter 1. Table of Contents



hisock, Release 1.0

Adding (some) functionality to our server

So far, we have made a server and client, but it doesn’t really do anything. So, it’s time to add some functionality,
starting with the server!

Now, let’s say that we want to print the client’s IP on the server side, whenever the server connects to a client. hisock
provides something I like to call “reserved functions”, where there are certain commands that get attached to data that
occur on very special events. For server, there are 3:

1. join occurs whenever a client connects

2. leave occurs whenever a client disconnects

3. message occurs whever a client sends a “message”

(I mean, they’re pretty self-explanatory)

Anyways, we can use the join reserved function to print the client’s IP, like so:

# Server
from hisock import iptup_to_str
...
server = ...

@server.on("join")
def clt_join(clt_data): # Of course, no message on join

print(
f"Cool, {iptup_to_str(clt_data['ip'])} joined!

) # the IP is stored in a tuple, with a (str IP, int Port) format

while True:
server.run()

Now, if we run the client on this updated server, we will see the IP address of the client!

Of course, this is still not that interesting on the client side, so we’ll finally start to send some data in the next part!

Sending data to our client

Obviously, if we don’t have a way of sending data, there isn’t any use of hisock. hisock.server provides the .
send_client(), .send_all_clients(), and .send_client_raw()methods to send data to a specific client. With
the exception of send_client_raw(), the methods usually need the client to send to, command to associate the data,
and the data itself.

Note: Right, I’ve mentioned about commands a lot in this tutorial, but haven’t really explained what it is. To clean
up code structure, hisock divides the data receiving part with decorators; refer to Clearing some things up for more
details.

Anyways, we got our organized data receiving, but now, how do we actually receive the data? Well, hisock data
usually have a command before them, so that hisock can know which data should be sent to which function (as you
will see later on, the commands on data aren’t required)

We will be discussing more in-depth about what send_all_clients() and send_client_raw() does, but we shall
focus on send_client() for now

So, about send_client(): This method of HiSockServer is used to. . . send data to a specific client. It accepts 3
arguments: the client (we’ll be using its IP in this case), the command, and the data. The client’s IP can either be in the

1.1. Quickstart 7



hisock, Release 1.0

form “IP.IP.IP.IP:Port” as a string, OR as a two-element tuple, like (“IP.IP.IP.IP”, Port). We’ll be using the latter one
in this case.

Remember: The data must be a bytes-like object (E.g b”Sussy”)

Let’s say that we as soon as a client joins, the server should pick a random integer from 1 to 10000, and send it back to
the client. This is perfectly doable, and is pretty straightforward! Our server code would be:

# Server
import random
...
server = ...

@server.on("join")
def clt_join(clt_data): # Of course, no message on join

print(
f"Cool, {iptup_to_str(clt_data['ip'])} joined!

) # the IP is stored in a tuple, with a (str IP, int Port) format
randnum = random.randint(1, 10000)
server.send_client(clt_data['ip'], "random", str(randnum).encode())

...

While we sent the data to the client, the client still has no way of interpreting this new data! So, we must modify our
client

# Client
client = ...

@client.on("random")
def interpret_randnum(msg):

randnum = int(msg)
print(f"Random number generated by the server is a {randnum}!")

...

Now, whenever the client joins that server, it will receive the data sent by it! How cool is that?

Sending data to our server

By common sense, HiSockClient`s provide a way to send data to the server, with :meth:`send()
and raw_send(). Again, with the exception of raw_send(), the send methods accept two arguments; the first being
the command of the data, and the second being the data itself.

Like HiSockServer, The data must be a bytes-like object (E.g b”Sussy”)

Now, let’s say that after the client got its random number, we want to send to ther server a message saying, hey, we
received it, good for you. We could edit our client like:

# Client
client = ...

@client.on("random")
def interpret_randnum(msg):

randnum = int(msg)
(continues on next page)

8 Chapter 1. Table of Contents



hisock, Release 1.0

(continued from previous page)

print(f"Random number generated by the server is a {randnum}!")
client.send("verif", b"I GOT IT")

...

and our server can be

# Server
server = ...

@server.on("join")
def clt_join(clt_data): # Of course, no message on join

print(
f"Cool, {iptup_to_str(clt_data['ip'])} joined!

) # the IP is stored in a tuple, with a (str IP, int Port) format
randnum = random.randint(1, 10000)
server.send_client(clt_data['ip'], "random", str(randnum).encode())

@server.on("verif")
def verif_msg(clt_data, message):

print(f"Successfully sent the number to {iptup_to_str(clt_data['ip'])}!")

...

We’ve successfully made a functional client and server!

Conclusion

This wraps up the basics of hisock, but there is a lot more to know! If you are interested, I highly recommend you to
follow the Intermediate Tutorial (Still not created yet kek), where I’ll be covering some less beginner-friendly features
of hisock. See you soon!

Note: While you can create some basic applications with some basic knowledge of hisock, but for larger, more robust
applications, it is not recommended, but necessary to have a better understanding of it.

Refer to the Tutorials Page for more tutorials

1.1.4 Examples

Examples are located in the ./examples directory in hisock. You can take a look at some of them. The basic client-server
examples are:

Client

"""
Basic example of the structure of `hisock`. This is the client script.
Not an advanced example, but gets the main advantages of hisock across
"""

import time
(continues on next page)

1.1. Quickstart 9



hisock, Release 1.0

(continued from previous page)

from hisock import connect, get_local_ip

server_to_connect = input("Enter server IP to connect to (Press enter for default of␣
→˓your local IP): ")
port = input("Enter Server port number (Press enter for default of 6969): ")

if server_to_connect == '':
server_to_connect = get_local_ip()

if port == '':
port = 6969

else:
port = int(port)

name = input("Name? (Press enter for no name) ")
group = input("Group? (Press enter for no group) ")

print("======================================= ESTABLISHING CONNECTION␣
→˓=======================================")

if name == '':
name = None

if group == '':
group = None

join_time = time.time()

s = connect(
(server_to_connect, port),
name=name, group=group)

@s.on("hello_message")
def handle_hello(msg):

print("Thanks, server, for sending a hello, just for me!")
print(f"Looks like, the message was sent on timestamp {msg.decode()}, "

f"which is just {round(float(msg.decode()) - join_time, 6) * 1000}␣
→˓milliseconds since the connection!")

print("In response, I'm going to send the server a request to do some processing")

s.send("processing1", b"randnum**2")
result = int(s.recv_raw())

print(f"WHOAAA! The result is {result}! Thanks server!")

while True:
s.update()

Server

import sys
import time

(continues on next page)

10 Chapter 1. Table of Contents



hisock, Release 1.0

(continued from previous page)

import random

from hisock import start_server, get_local_ip, iptup_to_str

ADDR = get_local_ip()
PORT = 6969

if len(sys.argv) == 2:
ADDR = sys.argv[1]

if len(sys.argv) == 3:
PORT = int(sys.argv[2])

print(f"Serving at {ADDR}")
server = start_server((ADDR, PORT))

@server.on("join")
def client_join(client_data):

print(f"Cool, {':'.join(map(str, client_data['ip']))} joined!")
if client_data['name'] is not None:

print(f" - With a sick name \"{client_data['name']}\", very cool!")
if client_data['group'] is not None:

print(f" - In a sick group \"{client_data['group']}\", cool!")

print("I'm gonna send them a quick hello message")

server.send_client(client_data['ip'], "hello_message", str(time.time()).encode())

@server.on("processing1")
def process(client, process_request: str):

print(f"\nAlright, looks like {iptup_to_str(client['ip'])} received the hello␣
→˓message, "

"\nas now they're trying to compute something on the server, because they have
→˓"

"potato computers")
print("Their processing request is:", process_request)

for _ in range(process_request.count("randnum")):
randnum = str(random.randint(1, 100000000))
process_request = process_request.replace("randnum", randnum, 1)

result = eval(process_request) # Insecure, but I'm lazy, so...
print(f"Cool! The result is {result}! I'mma send it to the client")
server.send_client_raw(client['ip'], str(result).encode())

while True:
server.run()

1.1. Quickstart 11



hisock, Release 1.0

1.2 More Tutorials

These tutorials are aimed at people who have just finished the Quickstart Tutorial, but want to learn more about hisock.
As I’ve stated in the Quickstart tutorial, it is not recommended, but necessary, to have a deeper understanding of hisock
to create more complex applications.

1.2.1 Intermediate-level Tutorial

In this “tutorial”, I’ll talk about some more advanced topics that I may have mentioned in the quickstart, but never
talked about it. These topics are extremely important in order to develop a complex hisock application.

Without further adieu, let’s start!

Where we left off

In the quickstart tutorial, we left off knowing how to send data from server to client, and client to server. While
there is nothing much to the client-to-server interaction, with only one method .send(), there are FIVE methods for
a server-to-client interaction; send_client(), send_all_clients(), send_client_raw(), send_group(), and
send_group_raw(). While we have covered the most obvious one (send_client()), we have not yet covered the
other two.

Names and groups

Now, I’ll clear up some more stuff before we move on. Hisock provides what I like to call names and groups. Under-the-
hood, hisock usually identifies clients and servers by their IP Address. This works most of the times, but sometimes,
you want to differentiate between clients, without knowing the IP. This is where names come in; On client connection,
you can pass a name argument into connect(), as to bind a name to the client. Now, using some additional functions,
we could send and receive data by using the client name!

Now, on to groups. Like names, groups are another way of identifying a client, but instead of one client, it can
identify multiple! With groups, you can organize clients by what they correspond to. For example, if you are making
a multiplayer game, and you are making some sort of lobby for a limited number of clients, then a group would be a
good way to identify which clients are in which lobby.

12 Chapter 1. Table of Contents



hisock, Release 1.0

Note: I’ve actually never used groups before, which is pretty. . . uh. . . sad. I added groups because I thought of some
use cases for it, but I never bothered to use it in an example, so. . . yeah.

Now, let’s finally dig into the send methods!

The other send methods

In the beginner tutorial, we’ve covered the send_client() method that allows the server to send data to specific
clients. But, what if we wanted to send data to all the clients? Well, that is exactly what send_all_clients() does.
Yes, the name is pretty self-explanatory.

Now, let’s move on to send_client_raw()! Sometimes, while you do want to send data to a client, you don’t neces-
sarily want to send it with a command. For example, if a server just sent out information to a client, and a client sent
back some more information, it would be much easier to directly send data to the client, instead of sending a command,
and needing to make another function. So, send_client_raw() allows you to send data without a command.

Remember when I said that groups can be used to organize clients? Well, how do we communicate and send data to
a group? As you may have guessed by the name, send_group() sends data to a specific group, taking a group name
and the data as parameters.

1.3 API Reference

1.3.1 hisock.server

A module containing the main server classes and functions, including HiSockServer and start_server()

Note: Header lengths usually should not be that long; on average, header lengths are about 64 bytes long, which is
more than enough for most cases (10 vigintillion, 10**64). Plus, a release is planned for hisock that utilizes ints to
bump the header utilization from 10**x to 2**(7x) (where x is the header length)

class hisock.server.HiSockServer(addr: tuple[str, int], blocking: bool = True, max_connections: int = 0,
header_len: int = 16, tls: Union[dict, str] = None)

The server class for hisock HiSockServer offers a neater way to send and receive data than sockets. You don’t
need to worry about headers now, yay!

Parameters

• addr (tuple) – A two-element tuple, containing the IP address and the port number of where
the server should be hosted. Due to the nature of reserved ports, it is recommended to host
the server with a port number that’s higher than 1023. Only IPv4 currently supported

• blocking (bool, optional) – A boolean, set to whether the server should block the loop
while waiting for message or not. Default passed in by start_server() is True

• max_connections (int, optional) – The number of maximum connections
HiSockServer should accept, before refusing clients’ connections. Pass in 0 for
unlimited connections. Default passed in by start_server() is 0

• header_len (int, optional) – An integer, defining the header length of every mes-
sage. A smaller header length would mean a smaller maximum message length (about
10**header_len). Any client connecting MUST have the same header length as the server,

1.3. API Reference 13



hisock, Release 1.0

or else it will crash. Default passed in by start_server() is 16 (maximum length: 10
quadrillion bytes)

Variables

• addr (tuple) – A two-element tuple, containing the IP address and the port number

• header_len (int) – An integer, storing the header length of each “message”

• clients (dict) – A dictionary, with the socket as its key, and the client info as its value

• clients_rev (dict) – A dictionary, with the client info as its key, and the socket as its
value

• funcs (dict) – A list of functions registered with decorator on(). This is mainly used for
under-the-hood-code

Note: It is advised to use get_client() or get_all_clients() instead of using clients and clients_rev

Also, only IPv4 is currently supported

get_addr()
Gets the address of where the hisock server is serving at.

Returns A tuple, with the format (str IP, int port)

get_all_clients(key: Optional[Union[Callable, str]] = None)
Get all clients currently connected to the server. This is recommended over the class attribute self._clients
or self.clients_rev, as it is in a dictionary-like format

Parameters key (Union[Callable, str], optional) – If specified, there are two out-
comes: If it is a string, it will search for the dictionary for the key, and output it to a list
(currently support “ip”, “name”, “group”). Finally, if it is a callable, it will try to integrate
the callable into the output (CURRENTLY NOT SUPPORTED YET)

Returns A list of dictionaries, with the clients

Return type list[dict, . . . ]

get_client(client: Union[str, tuple[str, int]])
Gets a specific client’s information, based on either:

1. The client name

2. The client IP+Port

3. The client IP+Port, in a 2-element tuple

Parameters client (Union[str, tuple]) – A parameter, representing the specific client to
look up. As shown above, it can either be represented as a string, or as a tuple.

Raises

• ValueError – Client argument is invalid

• TypeError – Client does not exist

Returns A dictionary of the client’s info, including IP+Port, Name, Group, and Socket

Return type dict

get_group(group: str)
Gets all clients from a specific group

14 Chapter 1. Table of Contents



hisock, Release 1.0

Parameters group (str) – A string, representing the group to look up

Raises TypeError – Group does not exist

Returns A list of dictionaries of clients in that group, containing the address, name, group, and
socket

Return type list

on(command: str)
A decorator that adds a function that gets called when the server receives a matching command

Reserved functions are functions that get activated on specific events. Currently, there are 3 for HiSock-
Server:

1. join - Activated when a client connects to the server

2. leave - Activated when a client disconnects from the server

3. message - Activated when a client messages to the server

The parameters of the function depend on the command to listen. For example, reserved commands join
and leave have only one client parameter passed, while reserved command message has two: Client Data,
and Message. Other nonreserved functions will also be passed in the same parameters as message

In addition, certain type casting is available to nonreserved functions. That means, that, using type hints,
you can automatically convert between needed instances. The type casting currently supports:

1. bytes -> int (Will raise exception if bytes is not numerical)

2. bytes -> str (Will raise exception if there’s a unicode error)

Type casting for reserved commands is scheduled to be implemented, and is currently being worked on.

Parameters command (str) – A string, representing the command the function should activate
when receiving it

Returns The same function (The decorator just appended the function to a stack)

Return type function

run()
Runs the server. This method handles the sending and receiving of data, so it should be run once every
iteration of a while loop, as to not lose valuable information

Note: This is the main method to run HiSockServer. This MUST be called every iteration in a while loop, as to
keep waiting time as short as possible between client and server. It is also recommended to put this in a thread.

send_all_clients(command: str, content: bytes)
Sends the commmand and content to ALL clients connected

Parameters

• command (str) – A string, representing the command to send to every client

• content (bytes) – A bytes-like object, containing the message/content to send to each
client

send_client(client: Union[str, tuple], command: str, content: bytes)
Sends data to a specific client. Different formats of the client is supported. It can be:

• An IP + Port format, written as “ip:port”

• A client name, if it exists

1.3. API Reference 15



hisock, Release 1.0

Parameters

• client (Union[str, tuple]) – The client to send data to. The format could be either
by IP+Port, or a client name

• command (str) – A string, containing the command to send

• content (bytes) – A bytes-like object, with the content/message to send

Raises

• ValueError – Client format is wrong

• TypeError – Client does not exist

• UserWarning – Using client name, and more than one client with the same name is de-
tected

send_client_raw(client, content: bytes)
Sends data to a specific client, without a command Different formats of the client is supported. It can be:

• An IP + Port format, written as “ip:port”

• A client name, if it exists

Parameters

• client (Union[str, tuple]) – The client to send data to. The format could be either
by IP+Port, or a client name

• content (bytes) – A bytes-like object, with the content/message to send

Raises

• ValueError – Client format is wrong

• TypeError – Client does not exist

• Warning – Using client name and more than one client with the same name is detected

send_group(group: str, command: str, content: bytes)
Sends data to a specific group. Groups are recommended for more complicated servers or multipurpose
servers, as it allows clients to be divided, which allows clients to be sent different data for different purposes.

Parameters

• group (str) – A string, representing the group to send data to

• command (str) – A string, containing the command to send

• content (bytes) – A bytes-like object, with the content/message to send

Raises TypeError – The group does not exist

send_group_raw(group: str, content: bytes)
Sends data to a specific group, without commands. Groups are recommended for more complicated servers
or multipurpose servers, as it allows clients to be divided, which allows clients to be sent different data for
different purposes.

Non-command-attached content is recommended to be used alongside with HiSockClient.recv_raw()

Parameters

• group (str) – A string, representing the group to send data to

• content (bytes) – A bytes-like object, with the content/message to send

16 Chapter 1. Table of Contents



hisock, Release 1.0

Raises TypeError – The group does not exist

class hisock.server.ThreadedHiSockServer(addr, blocking=True, max_connections=0, header_len=16)
A downside of HiSockServer is that you need to constantly run() it in a while loop, which may block
the program. Fortunately, in Python, you can use threads to do two different things at once. Using
ThreadedHiSockServer, you would be able to run another blocking program, without ever fearing about block-
ing and all that stuff.

Note: In some cases though, HiSockServer offers more control than ThreadedHiSockServer, so be careful
about when to use ThreadedHiSockServer over HiSockServer

join()
Waits for the thread to be killed

run()
The main while loop to run the thread

Refer to HiSockServer for more details

Warning: This method is NOT recommended to be used in an actual production enviroment. This is
used internally for the thread, and should not be interacted with the user

start_server()
Starts the main server loop

stop_server()
Stops the server

hisock.server.start_server(addr, blocking=True, max_connections=0, header_len=16)
Creates a HiSockServer instance. See HiSockServer for more details

Returns A HiSockServer instance

hisock.server.start_threaded_server(addr, blocking=True, max_connections=0, header_len=16)
Creates a ThreadedHiSockServer instance. See ThreadedHiSockServer for more details

Returns A ThreadedHiSockServer instance

1.3.2 hisock.client

A module containing the main client classes and functions, including HiSockClient and connect()

class hisock.client.HiSockClient(addr: tuple[str, int], name: Union[str, None], group: Union[str, None],
blocking: bool = True, header_len: int = 16)

The client class for hisock. HiSockClient offers a higher-level version of sockets. No need to worry about
headers now, yay! HiSockClient also utilizes decorators to receive messages, as an easy way of organizing your
code structure (methods are provided, like recv_raw(), of course)

Parameters

• addr (tuple) – A two-element tuple, containing the IP address and the port number of the
server wishing to connect to Only IPv4 currently supported

• name (str, optional) – Either a string or NoneType, representing the name the client
goes by. Having a name provides an easy interface of sending data to a specific client and
identifying clients. It is therefore highly recommended to pass in a name

1.3. API Reference 17



hisock, Release 1.0

Pass in NoneType for no name (connect should handle that)

• group (str, optional) – Either a string or NoneType, representing the group the client is
in. Being in a group provides an easy interface of sending data to multiple specific clients,
and identifying multiple clients. It is highly recommended to provide a group for complex
servers

Pass in NoneType for no group (connect should handle that)

• blocking (bool, optional) – A boolean, set to whether the client should block the loop
while waiting for message or not. Default sets to True

• header_len (int, optional) – An integer, defining the header length of every mes-
sage. A smaller header length would mean a smaller maximum message length (about
10**header_len). The header length MUST be the same as the server connecting, or it will
crash (hard to debug though). Default sets to 16 (maximum length of content: 10 quadrillion
bytes)

Variables

• addr (tuple) – A two-element tuple, containing the IP address and the port number

• header_len (int) – An integer, storing the header length of each “message”

• name (str) – A string, representing the name of the client to identify by. Defaults to None

• group (str) – A string, representing the group of the client to identify by. Defaults to None

• funcs (dict) – A list of functions registered with decorator on().

Warning: This is mainly used for under-the-hood-code, so it is NOT recommended to
be used in production-ready code

change_group(new_group: Optional[str])
Changes the client’s group

Parameters new_group (Union[str, None]) – The new graup name of the client

change_name(new_name: Optional[str])
Changes the name of the client

Parameters new_name (Union[str, None]) – The new name for the client to be called

close()
Closes the client; running client.update() won’t do anything now

on(command: str)
A decorator that adds a function that gets called when the client receives a matching command

Reserved functions are functions that get activated on specific events. Currently, there are 2 for HiSock-
Client:

1. client_connect - Activated when a client connects to the server

2. client_disconnect - Activated when a client disconnects from the server

The parameters of the function depend on the command to listen. For example, reserved functions
client_connect and client_disconnect gets the client’s data passed in as an argument. All other nonreserved
functions get the message passed in.

In addition, certain type casting is available to nonreserved functions. That means, that, using type hints,
you can automatically convert between needed instances. The type casting currently supports:

18 Chapter 1. Table of Contents



hisock, Release 1.0

1. bytes -> int (Will raise exception if bytes is not numerical)

2. bytes -> float (Will raise exception if bytes is not numerical)

3. bytes -> str (Will raise exception if there’s a unicode error)

Type casting for reserved commands is scheduled to be implemented, and is currently being worked on.

Parameters command (str) – A string, representing the command the function should activate
when receiving it

Returns The same function (The decorator just appended the function to a stack

Return type function

raw_send(content: bytes)
Sends a message to the server: NO COMMAND REQUIRED. This is preferable in some situations, where
clients need to send multiple data over the server, without overcomplicating it with commands

Parameters content (bytes) – A bytes-like object, with the content/message to send

recv_raw()→ bytes
Waits (blocks) until a message is sent, and returns that message. This is not recommended for content
with commands attached; it is meant to be used alongside with HiSockServer.send_client_raw() and
HiSockServer.send_group_raw()

Returns A bytes-like object, containing the content/message the client first receives

Return type bytes

send(command: str, content: bytes)
Sends a command & content to the server, where it will be interpreted

Parameters

• command (str) – A string, containing the command to send

• content (bytes) – A bytes-like object, with the content/message to send

update()
Handles newly received messages, excluding the received messages for wait_recv This method must be
called every iteration of a while loop, as to not lose valuable info. In some cases, it is recommended to run
this in a thread, as to not block the program

Note: This is the main method to run HiSockClient. This MUST be called every iteration in a while loop, as to
keep waiting time as short as possible between client and server. It is also recommended to put this in a thread.

class hisock.client.ThreadedHiSockClient(addr, name=None, group=None, blocking=True,
header_len=16)

A downside of HiSockClient is that you need to constantly run() it in a while loop, which may block
the program. Fortunately, in Python, you can use threads to do two different things at once. Using
ThreadedHiSockClient, you would be able to run another blocking program, without ever fearing about block-
ing and all that stuff.

Note: In some cases though, HiSockClient offers more control than ThreadedHiSockClient, so be careful
about when to use ThreadedHiSockClient over HiSockClient

join()
Waits for the thread to be killed

1.3. API Reference 19



hisock, Release 1.0

run()
The main while loop to run the thread

Refer to HiSockClient for more details

Warning: This method is NOT recommended to be used in an actual production enviroment. This is
used internally for the thread, and should not be interacted with the user

start_client()
Starts the main server loop

stop_client()
Stops the client

hisock.client.connect(addr, name=None, group=None, blocking=True, header_len=16)
Creates a HiSockClient instance. See HiSockClient for more details

Parameters

• addr (tuple) – A two-element tuple, containing the IP address and the port number

• name (str, optional) – A string, containing the name of what the client should go by.
This argument is optional

• group (str, optional) – A string, containing the “group” the client is in. Groups can be
utilized to send specific messages to them only. This argument is optional

• blocking (bool, optional) – A boolean, specifying if the client should block or not in
the socket.

Defaults to True

• header_len (int, optional) – An integer, defining the header length of every message.

Defaults to True

Returns A HiSockClient instance

Return type instance

hisock.client.threaded_connect(addr, name=None, group=None, blocking=True, header_len=16)
Creates a ThreadedHiSockClient instance. See ThreadedHiSockClient for more details

Returns A ThreadedHiSockClient instance

1.3.3 hisock.utils

A module containing some utilities to either:

1. Help hisock.client and hisock.server run (denoted with leading underscore)

2. Provide functions to use alongside hisock

hisock.utils.get_local_ip()
Gets the local IP of your device, with sockets

Returns A string containing the IP address, in the format “ip:port”

Return type str

20 Chapter 1. Table of Contents



hisock, Release 1.0

hisock.utils.input_client_config(ip_prompt: str = 'Enter the IP of the server: ', port_prompt: str = 'Enter
the Port of the server: ', name_prompt: Union[str, None] = 'Enter name to
connect as: ', group_prompt: Union[str, None] = 'Enter group to connect
to: ') → tuple[Union[str, int], ...]

Provides a built-in way to obtain the IP and port of the configuration of the server to connect to

Parameters

• ip_prompt (str, optional) – A string, specifying the prompt to show when asking for
IP.

Default is “Enter the IP of the server: “

• port_prompt (str, optional) – A string, specifying the prompt to show when asking
for Port

Default is “Enter the Port of the server: “

• name_prompt (Union[str, None], optional) – A string, specifying the prompt to
show when asking for Client Name

Default is “Enter name to connect as: ” (Pass in None for no input)

• group_prompt (Union[str, None], optional) – A string, specifying the prompt to
show when askign for Client Group

Default is “Enter group to connect to: ” (Pass in None for no input)

Returns A tuple containing the config options of the server

Return type tuple[str, int, Optional[str], Optional[int]]

hisock.utils.input_server_config(ip_prompt: str = 'Enter the IP of where to host the server: ', port_prompt:
str = 'Enter the Port of where to host the server: ') → tuple[str, int]

Provides a built-in way to obtain the IP and port of where the server should be hosted, through input()

Parameters

• ip_prompt (str, optional) – A string, specifying the prompt to show when asking for
IP.

Default is “Enter the IP of where to host the server: “

• port_prompt (str, optional) – A string, specifying the prompt to show when asking
for Port

Default is “Enter the Port of where to host the server: “

Returns A two-element tuple, consisting of IP and Port

Return type tuple[str, int]

hisock.utils.ipstr_to_tup(formatted_ip: str)→ tuple[Union[str, int], ...]
Converts a string IP address into a tuple equivalent

Parameters formatted_ip (str) – A string, representing the IP address.

Must be in the format “ip:port”

Returns A tuple, with IP address as the first element, and an INTEGER port as the second element

Return type tuple[str, int]

hisock.utils.iptup_to_str(formatted_tuple: tuple[str, int])→ str
Converts a tuple IP address into a string equivalent

This function is like the opposite of ipstr_to_tup

1.3. API Reference 21



hisock, Release 1.0

Parameters formatted_tuple (tuple[str, int]) – A two-element tuple, containing the IP ad-
dress and the port. Must be in the format (ip: str, port: int)

Returns A string, with the format “ip:port”

Return type str

1.4 Changelog

This page keeps track of all the new features that were added to, modified, or removed in specific versions. This may
be useful for selecting which version is best for you, if the latest version does not work for you.

1.4.1 v1.0

This version is the first minor version of hisock! It contains several major code accessibility things added, though not
a lot of in-usage code has been added in this version.

New features

• PyPI installation of hisock (python -m pip install hisock or pip3 install hisock)

• Documentation for hisock, hosted here! (ReadTheDocs)

• New support for threaded HiSockServer and HiSockClient

Improved features

• Better traceback handling

1.4.2 v0.0.1 (GRAND RELEASE)

The first version of hisock! Contains all the basics of what hisock can do, including:

• Name/Group feature to identify specific clients

• Decorators to handle message receiving

• Under-the-hood code that handles headers

• Type-casting receiving function arguments

22 Chapter 1. Table of Contents



INDEX

C
change_group() (hisock.client.HiSockClient method),

18
change_name() (hisock.client.HiSockClient method), 18
close() (hisock.client.HiSockClient method), 18
connect() (in module hisock.client), 20

G
get_addr() (hisock.server.HiSockServer method), 14
get_all_clients() (hisock.server.HiSockServer

method), 14
get_client() (hisock.server.HiSockServer method), 14
get_group() (hisock.server.HiSockServer method), 14
get_local_ip() (in module hisock.utils), 20

H
HiSockClient (class in hisock.client), 17
HiSockServer (class in hisock.server), 13

I
input_client_config() (in module hisock.utils), 20
input_server_config() (in module hisock.utils), 21
ipstr_to_tup() (in module hisock.utils), 21
iptup_to_str() (in module hisock.utils), 21

J
join() (hisock.client.ThreadedHiSockClient method), 19
join() (hisock.server.ThreadedHiSockServer method),

17

O
on() (hisock.client.HiSockClient method), 18
on() (hisock.server.HiSockServer method), 15

R
raw_send() (hisock.client.HiSockClient method), 19
recv_raw() (hisock.client.HiSockClient method), 19
run() (hisock.client.ThreadedHiSockClient method), 19
run() (hisock.server.HiSockServer method), 15
run() (hisock.server.ThreadedHiSockServer method), 17

S
send() (hisock.client.HiSockClient method), 19
send_all_clients() (hisock.server.HiSockServer

method), 15
send_client() (hisock.server.HiSockServer method),

15
send_client_raw() (hisock.server.HiSockServer

method), 16
send_group() (hisock.server.HiSockServer method), 16
send_group_raw() (hisock.server.HiSockServer

method), 16
start_client() (hisock.client.ThreadedHiSockClient

method), 20
start_server() (hisock.server.ThreadedHiSockServer

method), 17
start_server() (in module hisock.server), 17
start_threaded_server() (in module hisock.server),

17
stop_client() (hisock.client.ThreadedHiSockClient

method), 20
stop_server() (hisock.server.ThreadedHiSockServer

method), 17

T
threaded_connect() (in module hisock.client), 20
ThreadedHiSockClient (class in hisock.client), 19
ThreadedHiSockServer (class in hisock.server), 17

U
update() (hisock.client.HiSockClient method), 19

23


	Table of Contents
	Quickstart
	Understanding hisock
	What is the socket module?
	What are the advantages of using hisock over socket?
	How do you send and received data with hisock?

	Installation
	Tutorial
	Creating our first server
	Creating our first client
	Clearing some things up
	Adding (some) functionality to our server
	Sending data to our client
	Sending data to our server
	Conclusion

	Examples

	More Tutorials
	Intermediate-level Tutorial
	Where we left off
	Names and groups
	The other send methods


	API Reference
	hisock.server
	hisock.client
	hisock.utils

	Changelog
	v1.0
	New features
	Improved features

	v0.0.1 (GRAND RELEASE)


	Index

